Biodegradable chitosan-poly(Ɛ-caprolactone) dialdehyde copolymer networks for soft tissue engineering

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrospun chitosan-graft-poly (ɛ-caprolactone)/poly (ɛ-caprolactone) nanofibrous scaffolds for retinal tissue engineering

A promising therapy for retinal diseases is to employ biodegradable scaffolds to deliver retinal progenitor cells (RPCs) for repairing damaged or diseased retinal tissue. In the present study, cationic chitosan-graft-poly(ɛ-caprolactone)/polycaprolactone (CS-PCL/PCL) hybrid scaffolds were successfully prepared by electrospinning. Characterization of the obtained nanofibrous scaffolds indicated ...

متن کامل

Preparation and characterization of 2,3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds

Article history: Bacterial cellulose (BC) is Received 18 August 2008 Received in revised form 28 December 2008 Accepted 6 January 2009 Available online 20 January 2009

متن کامل

design and fabrication of biodegradable porous chitosan/gelatin/tricalcium phosphate hybrid scaffolds for tissue engineering

in this study, based on a biomimetic approach, novel 3d biodegradable porous hybrid scaffolds consisting of chitosan, gelatin, and tricalcium phosphate were developed for bone and cartilage tissue engineering. macroporous chitosan/ gelatin/β-tcp scaffolds were prepared through the process of freeze-gelation/solid-liquid phase separation. the results showed that the prepared scaffolds are highly...

متن کامل

Novel hybrid membrane of chitosan/poly (ε-caprolactone) for tissue engineering

We investigated the potential use of 3D hybrid membrane: poly (ε-caprolactone) (PCL) mesh using rotary jet spinning with subsequent chitosan (CH) coating. The morphological examinations by scanning electron microscopy (SEM) were proved the efficiency of this technique on obtaining relative homogeneous PCL fiber mats (15,49±4,1µm), with high surface porosity (1,06±0,41µm) and effective CH coatin...

متن کامل

Synthesis of biodegradable and electroactive multiblock polylactide and aniline pentamer copolymer for tissue engineering applications.

To obtain one biodegradable and electroactive polymer as the scaffold for tissue engineering, the multiblock copolymer PLAAP was designed and synthesized with the condensation polymerization of hydroxyl-capped poly( l-lactide) (PLA) and carboxyl-capped aniline pentamer (AP). The PLAAP copolymer exhibited excellent electroactivity, solubility, and biodegradability. At the same time, as one scaff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Polymer Degradation and Stability

سال: 2017

ISSN: 0141-3910

DOI: 10.1016/j.polymdegradstab.2017.02.005